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The mathematical relations to calculate the isobaric coefficient of thermal expansion, the coefficient of 

isobaric compressibility and difference of heats for cluster systems having got within the modified cluster 

model developed earlier by the authors on the assumption that in disordered condensed matters there is a 

cluster distribution by the particle number are conducted. 
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1. INTRODUCTION 
 

The experimental and theoretical researches of 

cluster model and nanoparticles have allowed to estab-

lish that their heat capacity is more than the one of 

macroscopic samples of the same chemical set. The 

increase of heat capacity and elastic parameters at size 

reduction transiting to nanosystems is a general physi-

cal property regardless the chemical matter of nanosize 

items [1]. For example, heat capacity of Сu clusters of 

50 nm size exceeds the one of Cu volume at 1.2-2.0 

times at temperature 200 K-450 K [2]. The heat cpacity 

of nickel the diameter of which is 22 nm was at two 

times higher than the heat capacity of volume Ni at 

temperature 300 K-800 K [3]. In paper works [4, 5] 

heat capacity of metal Ni and Cu nanoclusters was 

studied by the computer molecular-dynamic method 

and the increase of their heat capacity  versus thermal 

expansion of volume phase was found.   

In the paper work of Ogunsola Oluwatosin A. with the 

help of computer modeling the samples of Ti nanoparticles 

are studied on the base of Monte-Carlo method. The mod-

ule of elastic sample consisting of titan nanoparticles in-

creases at the reduction of particle size. The Japanese 

scientists Qing-Qing Ni, Yaqin Fu, Masaharu Iwamoto 

got the same results.  It was found out that the elastic 

module of nanocomposite was unchangeable within 8 % of 

volume fraction of quartz particles and  it increased when 

the particle sizes were becoming nano order. The theoreti-

cal basis of elastic module increasing at nanoparticle size 

reduction are given at the paper work of Morozov N.F., 

Krivtsov A.M., Russian scientists [6]. 

The temperature reduction of melting at crystal size 

reduction was determined in 1909 [7], the increase of size 

effect at one and a half times in cluster and nanosystems 

happens [8, 9]. For example, the melting temperature of 

the particle Au abruptly differed from the melting point of 

the macroscopic body. The reduction of melting tempera-

ture of nanocluster with its diameter reduction allows to 

suggest the presence of dependence of heat melting and 

entropy ΔSm from Au cluster size [10]. The shown effect is 

usually studied on metal nanostructures [8-11]. Na-

noscape effects can be observed for cluster formulations 

and particles at the melting process of inert crystals and 

organic liquid crystals. In the following works [12, 13] 

there are the results of temperature calculations of Ar 

nanoparticles melting depending on the particle number 

in their set. For Ar cluster when Z  13 the calculations 

show the melting temperature Tm  28 K (macroscopic 

melting temperature 84 K order). 

 

2. ELASTIC PROPERTIES OF CLUSTER SYS-

TEMS 
 

At the result of density fluctuation in condensed 

matters the clusters are randomly  performed  and at 

the equilibrium matter state the cluster distribution by 

number is installed. The distribution function for the 

random variable the density probability of which is 

determined by the formulae (Erlang distribution) is 

used by the authors [14–16]  for the cluster distribution 

by their sizes. 
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where   – scale parameter ( 0  ), m – shape parame-

ter, or distribution order, Z – number of the particles in 

cluster.  

The formulae usage (2) for the description of real 

cluster systems in disordered condensed matters it is 

necessary to find out the selection criteria of scale pa-

rameter   and shape parameter  m   which are 

generally the functions of the liquid state parameters.  

The ration (1) has made it possible find the average 

particle number in cluster according to the ration [14-16]  
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In the formulae (2) the value   is atomic packing 

coefficient in the cluster system which is determined as 

the relation of all atom volume in cluster set .at  to 

the whole cluster volume .Clust  in firm sphere model 
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where 0  – diameter of atom or effective molecular 

diameter of firm spheres.  
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Let us define the coefficient of thermal expansion of 

the average cluster (the cluster contacting the average 

particle number in its set) at the constant pressure by 

the formulae  
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Taken into account the formulae of the average 

number of particles in the cluster (2) for the coefficient 

,P  the following ration is found  

 

  , 1P P     (5) 

 

where P  – the isobaric coefficient of thermal expan-

sion of macroscopic sample,   – the packing coefficient 

of particles in the cluster set. 

For real nuclear and molecular systems the packing 

coefficient takes the value from 0.16 (6) at the critical area 

of liquid to 0.62-0.68 near crystallization temperature 

hence according to the formulae thermal expansion of 

cluster system exceeds the one of macroscopic sample 

approximately at one and a half times. The metallic clus-

ter set has almost the same features as fcc (face-centerd-

cubic) or hcp (hexagonal close packed) of volume sample 

up to melting point, after firm cluster melting in the liquid 

cluster set the packing coefficient of particles in cluster 

becomes a temperature function, however, it should be 

noted that at the critical liquid point the packing coeffi-

cient differs from zero and cluster heat expansion exceeds 

microscope sample heat expansion at 16 %. 

The isothermal compressibility coefficient of the 

middle cluster is defined by the formulae:  
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On the base of the formulae (2) there is a ration for 

the isothermal compressibility coefficient of the middle 

cluster 
 

  , 1T T     (7) 

 

where T  – the isothermal compressibility coefficient 

of microscope sample. 

The ration (5) and (7) show that coefficients of iso-

thermal heat expansion and isothermal compressibility 

of the middle cluster are defined by the packing coeffi-

cient in the cluster set which is proportional to the 

middle number of particles in the cluster (shown at the 

formulae (3)), that’s why the more particles are in the 

cluster set, the more its isothermal compressibility is. 

At Table 1 the equilibrium values of elastic module and 

isothermal compressibility for Si particles what show 

that elastic module of particles quickly reduces with 

size particle growth are given [17]. 

The fluctuation free capacity at condensed matter is 

defined by the formulae 
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virtue of justice the ratios (5) and (7) are the same as in 

the middle cluster  
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Table 1 – The isothermal compressibility of  Si particles [17] 
 

 

Nanocluster 

Elastic module 

at equilibrium,  

GPa 

Isothermal 

compressibility,  

GPa – 1 

Si5 585 0.00171 

Si10 342 0.00292 

Si18 206 0.00485 

Massive Si 166 0.00602 
 

This conclusion is important for theoretical research 

of cluster systems by statistic physics methods where 

rations of free capacity are defining for the calculations 

of thermodynamic and structural fluid properties [18]. 

 

3. THE CALORIC PROPERTIES OF CLUSTER 

SYSTEMS 
 

The heat capacities at the constant pressure and 

volumes define caloric properties and are the funda-

mental features of material. The phenomenological 

thermodynamic allows to get a ratio series connecting 

heat capacity of PC  and VC  and elastic properties for 

microscope samples [15]: 
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The elastic coefficients P  and T  can be experi-

mentally defined by P-V-T are measurements in the 

material and allow to trace the dependency of heat ca-

pacity differences of the material on state parameters 

and external disturbances. 

For cluster systems the ration (10) should be with 

the account of the obtained formulas as  
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The isobaric heat capacity of the cluster system con-

taining   particles with the account of the packing 

coefficient   according to the rations (2), (3) and (11) 

will be defined by the formulae  
 

 

3

0
.

.

1
8

PClust P

Clust

C C
R

  
    
   

 (12) 

 

where .ClustR  – a radius of sphere cluster. 

The proportional coefficient between the isobaric 

heat capacity of the cluster system containing the par-

ticle number from 10 to 100 (small clusters) and the 

isobaric heat capacity of microscope sample is the func-

tion of three parameters- particle number in cluster  , 

radius, or cluster size .ClustR  and particle diameter 0 . 

At the conditions of computer simulation of cluster 

systems the condition of constancy of the particle number 

in cluster   can be imposed and change its geometrical 
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Table 2 – The nanosize effect of heat capacity of Cu and Ni particles 
 

 

  [19] 
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 ( )meltH Ry  [19] 

 

( / )meltS mRy K [19] 

 

,mT K  [19] 

Cu, 0 2.56A   , ГЦК( 3.605A)a  , 0 1356.55KmeltT  , 315KDT   

201 16.4 9.54 0.673 0.851 791 

369 20.1 9.47 0.907 1.019 890 

555 23.3 9.22 1.525 1.639 930 

791 26.5 8.99 2.280 2.315 985 

1157 29.6 9.25 2.811 2.755 1020 

1505 32.6 9.22 4.681 4.404 1063 

Ni, 0 2.48A  , ГЦК( 3.524A)a  , 0 1726.0KmeltT  , 375KDT   

201 15.9 9.54 0.768 0.786 977 

369 19.3 9.71 1.314 1.253 1049 

555 22.7 9.00 2.058 1.798 1145 

791 25.4 9.27 3.239 2.671 1213 

1157 29.0 9.04 5.868 4.657 1260 

1505 31.7 9.00 8.028 6.175 1300 
 

Notes. At Table the temperature values of nanoparticle crystallization at the dependence of its geometrical sizes 

and numerical set having got by the authors are given [19]. 
 

dimensions, i.e. cluster radius .ClustR , then in firm 

sphere module ( 0 const  )the isobaric heat capacity 

increases with the cluster radius decrease. 

 One of the most constant Ar clusters is a cluster 

consisting of 13 particles 13   with radius 8.0 А and 

Ar atom diameter 3.40 А, then the ration concludes to 

the result . 1.13Clust PC C , which corresponds with  the 

results of computer experiments by molecular dynamic 

and Monte-Carlo giving the value growth of heat capac-

ity at 15 % [4].  

The isochoric heat capacity of cluster system is de-

fined by the ration similar to the formulae (12) which 

has the following expression  
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Because of the constancy of cluster volume its radius 

is permanent and only the number of particles in the clus-

ter can be changed, while the more the number of parti-

cles in cluster structure, the more the difference between 

cluster and macroscope isochoric heat capacities. 

It should be noted that the ration of isobaric to iso-

choric heat capacity is the same for cluster system and 

microscope sample at the same chemical set 
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For metallic nanoparticles particularly Ni and Cu 

nanoparticles the increase of heat capacity is defined 

versus to the heat capacity of corresponding volume 

phase, but according to different values this increase is 

within 200 % to 10 % [4, 19]. 

 

4. CONCLUSIONS 

 

In the given paper work the values of isobaric heat ca-

pacity of Ni and Cu nanoparticles of different sizes by the 

formulae (12) on base of data given in the article [19] 

which showed (Table 2) that the heat capacity of Ni and 

Cu nanoparticles exceed the heat capacity of correspond-

ing volume sample approximately at 10 % reaching max-

imum possible value in 1.74 times for the densest packing 

atoms in particle structure ( 0.74  ) are conducted. Na-

noscale effect of heat capacity comprising at the increas-

ing effect of cluster heat capacity with the reduction of 

geometrical sizes of nanoparticles within its numerical set 

from 20 to 1500 particles in the set are proved by the au-

thors’ module in the given article.  
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